My watch list
my.chemeurope.com  
Login  

Electron density




Electron density is the measure of the probability of an electron being present at a specific location.

In molecules, regions of electron density are usually found around the atom, and its bonds. In de-localized or conjugated systems, such as phenol, benzene and compounds such as hemoglobin and chlorophyll, the electron density covers an entire region, i.e., in benzene they are found above and below the planar ring. This is sometimes shown diagrammatically as a series of alternating single and double bonds. In the case of phenol and benzene, a circle inside a hexagon shows the de-localized nature of the compound. This is shown below:

In compounds with multiple ring systems which are interconnected, this is no longer accurate, so alternating single and double bonds are used. In compounds such as chlorophyll and phenol, some diagrams show a dotted or dashed line to represent the de-localization of areas where the electron density is higher next to the single bonds [1]. Conjugated systems can sometimes represent regions where electromagnetic radiation is absorbed at different wavelengths resulting in compounds appearing coloured. In polymers, these areas are known as chromophores.

Electron densities are sometimes probed with X-ray diffraction scans, where X-rays of a suitable wavelength are targeted towards a sample and measurements are made over time to represent, probabilistically, where electrons can be found. Quantum electrodynamics and some branches of quantum theory also study and analyze electron superposition and other phenomena. Quantum tunneling and quantum entanglement are interesting areas involving electrons (or photons). High speed electrons are often used in transmission electron micrography (or microscopy, TEM) and deep inelastic scattering, as well as many other high-speed particle experiments involving electrons.

Mulliken population analysis is based on electron densities in molecules and is a way of dividing the density between atoms to give an estimate of atomic charges.

Spin density

Spin density is electron density applied to free radicals. It is defined as the total electron density of electrons of one spin minus the total electron density of the electrons of the other spin. One of the ways to measure it experimentally is by electron spin resonance [2].

See also


References

  1. ^ e.g., the white line in the diagram on Chlorophylls and Carotenoids
  2. ^ IUPAC Gold BookLink
 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Electron_density". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE