To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Electric arc furnace
An electric arc furnace (EAF) is a furnace that heats charged material by means of an electric arc. Arc furnaces range in size from small units of approximately one ton capacity (used in foundries for producing cast iron products) up to about 400 ton units used for secondary steelmaking. Arc furnaces used in research laboratories and by dentists may have a capacity of only a few dozen grams. Temperatures inside an electric arc furnace can rise to 1,800 degrees Celsius. Additional recommended knowledge
History
The first electric arc furnaces were developed by Paul Héroult, of France, with a commercial plant established in the United States in 1907. Initially "electric steel" was a specialty product for such uses as machine tools and spring steel. Arc furnaces were also used to prepare calcium carbide for use in carbide lamps. In the 19th century, a number of men had employed an electric arc to melt iron. Sir Humphry Davy conducted an experimental demonstration in 1810; welding was investigated by Pepys in 1815; Pinchon attempted to create an electrothermic furnace in 1853; and, in 1878 - 79, Sir William Siemens took out patents for electric furnaces of the arc type. The Stessano electric furnace is an arc type furnace that usually rotates to mix the bath. The Girod furnace is similar to the Héroult furnace. Different from the arc type of electrothermic furnace is the induction type furnace. The Kjellin furnace and the Röchling-Rodenhauser furnace are two. The Grönwall furnace produced steel at Trollhattan, in Scandinavia. While EAFs were widely used in World War II for production of alloy steels, it was only afterwards that electric steelmaking began to expand. The low capital cost for a mini-mill - around US$140-200 per ton of annual installed capacity, compared with US$1,000 per ton of annual installed capacity for an integrated steel mill - allowed mills to be quickly set up in war-ravaged Europe, and also allowed them to successfully compete with the big United States steelmakers, such as Bethlehem Steel and U.S. Steel, for low-cost, carbon steel 'long products' (structural steel, rod and bar, wire and fasteners) in the U.S. market. When Nucor - now one of the largest steel producers in the U.S.[1] - decided to enter the long products market in 1969, they chose to start up a mini-mill, with an EAF as its steelmaking furnace, soon followed by other manufacturers. Whilst Nucor expanded rapidly up and down the Eastern U.S., the companies that followed them into mini-mill operations concentrated on local markets for long products, where the use of an EAF allowed the plants to be flexible with production, according to local demand. This pattern was also followed in countries around the world, with EAF steel production primarily used for long products, while integrated mills, using blast furnaces and basic oxygen furnaces, cornered the markets for 'flat products' - sheet steel and heavier steel plate. In 1987, Nucor made the decision to expand into the flat products market, still using the EAF production route[2]. The fact that an EAF uses scrap steel as feedstock, instead of raw iron, has impacted on the quality of the flat product made from EAF steel, because of the limited amount of control over the impurities that are contained within the scrap. ConstructionAn electric arc furnace used for steelmaking consists of a refractory-lined vessel, usually water-cooled in larger sizes, covered with a retractable roof, and through which one or more graphite electrodes enter the furnace. The furnace is primarily split into three sections:
The hearth may be hemispherical in shape, or in an eccentric bottom tapping furnace (see below), the hearth has the shape of a halved egg. In modern meltshops, the furnace is often raised off the ground floor, so that ladles and slag pots can easily be maneuvered under either end of the furnace. Separate from the furnace structure is the electrode support and electrical system, and the tilting platform on which the furnace rests. Two configurations are possible: the electrode supports and the roof tilt with the furnace, or are fixed to the raised platform. A typical alternating current furnace has three electrodes. Electrodes are round in section, and typically in segments with threaded couplings, so that as the electrodes wear, new segments can be added. The arc forms between the charged material and the electrode, and the charge is heated both by current passing through the charge and by the radiant energy evolved by the arc. The electrodes are automatically raised and lowered by a positioning system, which may use either electric winch hoists or hydraulic cylinders. The regulating system maintains an approximately constant current and power input during the melting of the charge, even though scrap may move under the electrodes while it melts. The mast arms holding the electrodes carry heavy busbars, which may be hollow water-cooled copper pipes, used to convey current to the electrode holders. Modern systems use 'hot arms', where the whole arm carries the current, increasing efficiency. These can be made from copper-clad steel or aluminium. Since the electrodes move up and down automatically for regulation of the arc, and are raised to allow removal of the furnace roof, heavy water-cooled cables connect the bus tubes/arms with the transformer located adjacent to the furnace. To protect the transformer from the heat of the furnace, it is installed in a vault. The furnace is built on a tilting platform so that the liquid steel can be poured into another vessel for transport in the steel making process. The operation of tilting the furnace to pour off molten steel is called "tapping". Originally, all steelmaking furnaces had a tapping spout closed with refractory that washed out when the furnace was tilted, but often modern furnaces have an eccentric bottom tap-hole (EBT) to reduce inclusion of nitrogen and slag in the liquid steel. These furnaces have a taphole that passes vertically through the hearth and shell, and is set off-centre in the narrow 'nose' of the egg-shaped hearth. Modern plants may have two shells with a single set of electrodes that can be transferred between the two; one shell preheats scrap while the other shell is utilised for meltdown. Other DC-based furnaces have a similar arrangement, but have electrodes for each shell and one set of electronics. A mid-sized modern steelmaking furnace would have a transformer rated about 60,000,000 volt-amperes (60 MVA), with a secondary voltage between 400 and 900 volts and a secondary current in excess of 44,000 amperes. In a modern shop such a furnace would be expected to produce a quantity of 80 metric tonnes of liquid steel in approximately 60 minutes from charging with cold scrap to tapping the furnace. In comparison, basic oxygen furnaces can have a capacity of 150-300 tonnes per batch, or 'heat', and can produce a heat in 30-40 minutes. Enormous variations exist in furnace design details and operations, depending on the end product and local conditions, as well as ongoing research to improve furnace efficiency - the largest scrap-only furnace (in terms of tapping weight and transformer rating) is in Turkey, with a tap weight of 250 metric tonnes and a transformer of 240 MVA. To produce a ton of steel in an electric arc furnace requires on the close order of 400 kilowatt-hours per short ton of electrical energy, or about 440kWh per metric tonne; the theoretical minimum amount of energy required to melt a tonne of scrap steel is 300kWh (melting point 1520°C/2768°F). Electric arc steelmaking is only economical where there is a plentiful supply of electric power, with a well-developed electrical grid. Operation
Advantages of electric arc furnace for steelmakingThe precise control of chemistry and temperature encouraged use of electric arc furnaces during World War II for production of steel for shell casings. Today steelmaking arc furnaces produce many grades of steel, from concrete reinforcing bars and common merchant-quality standard channels, bars, and flats to special bar quality grades used for the automotive and oil industry. A typical steelmaking arc furnace is the source of steel for a mini-mill, which may make bars or strip product. The steelmaking arc furnace is generally charged with scrap steel, though if hot metal from a blast furnace or direct-reduced iron is available economically, these can also be used for steelmaking. Environmental issuesAlthough the modern electric arc furnace is a highly efficient recycler of steel scrap, operation of an arc furnace shop can have adverse environmental effects. Much of the capital cost of a new installation will be devoted to systems intended to reduce these effects, which include:
Because of the very dynamic quality of the arc furnace load, power systems may require technical measures to maintain the quality of power for other customers; flicker and harmonic distortion are common side-effects of arc furnace operation on a power system. Other electric arc furnacesFor steelmaking, direct current (DC) arc furnaces are used, with a single electrode in the roof and the current return through a conductive bottom lining or conductive pins in the base. The advantage of DC is lower electrode consumption per ton of steel produced, since only one electrode is used, as well as less electrical harmonics and other similar problems. However, the size of DC arc furnaces is limited by the available electrodes and maximum allowable voltage. Maintenance of the conductive furnace hearth is a bottleneck in extended operation of a DC arc furnace. However, Danieli - makers of steel plant equipment - are preparing to install a 420-tonne DC furnace, powered by two 160 MVA transformers, in a Japanese steel mill. Instead of an upper graphite electrode and a lower conductive hearth, this EAF would have two upper graphite electrodes. In a steel plant, a ladle furnace can be used to maintain the temperature of liquid steel during processing after tapping from the scrap-melting furnace. This also allows the molten steel to be kept ready for use in the event of a delay later in the steelmaking process. The ladle furnace consists of only the refractory roof and electrode system of a scrap-melting furnace, but it has no need for a tilting mechanism or scrap charging. Electric arc furnaces are also used for production of non-ferrous alloys, and for production of phosphorus. Furnaces for these services are physically different from steel-making furnaces and may operate on a continuous, rather than batch, basis. Continuous process furnaces may also use paste-type (Soderberg) electrodes to prevent interruptions due to electrode changes. Such furnaces are usually known as submerged arc furnaces, because the electrode tips are buried in the slag/charge, and arcing occurs through the slag, between the matte and the electrode. A steelmaking arc furnace, by comparison, arcs in the open. The key is the electrical resistance, which is what generates the heat required: the resistance in a steelmaking furnace is the atmosphere, while in a submerged arc furnace, the slag or charge forms the resistance. The liquid metal formed in either furnace is too conductive to form an effective heat-generating resistance. Amateurs have constructed a variety of arc furnaces, often based on electric arc welding kits contained by silical blocks or flower pots. Though crude, these simple furnaces are capable of melting a wide range of materials and creating calcium carbide etc. Vacuum arc remeltingIn critical military and commercial aerospace applications, material engineers commonly specify VIM-VAR steels. VIM means Vacuum Induction Melted and VAR means Vacuum Arc Remelted. VIM-VAR steels become bearings for jet engines, rotor shafts for military helicopters, flap actuators for fighter jets, gears in jet or helicopter transmissions, mounts or fasteners for jet engines, jet tail hooks and other demanding applications. Most grades of steel are melted once and are then cast or teemed into a solid form prior to extensive forging or rolling to a metallurgically sound form. In contrast, VIM-VAR steels go through two more highly purifying melts under vacuum. After melting in an electric arc furnace and alloying in an argon oxygen decarburization vessel, steels destined for vacuum remelting are cast into ingot molds. The solidified ingots then head for a vacuum induction melting furnace. This vacuum remelting process rids the steel of inclusions and unwanted gases while optimizing the chemical composition. The VIM operation returns these solid ingots to the molten state in the contaminant-free void of a vacuum. This tightly controlled melt often requires up to 24 hours. Still enveloped by the vacuum, the hot metal flows from the VIM furnace crucible into giant electrode molds. A typical electrode stands about 15 feet (5 meters) tall and will be in various diameters. The electrodes solidify under vacuum. For VIM-VAR steels, the surface of the cooled electrodes must be ground to remove surface irregularities and impurities before the next vacuum remelt. Then the ground electrode is placed in a VAR furnace. In a VAR furnace the steel gradually melts drop-by-drop in the vacuum-sealed chamber. Vacuum arc remelting further removes lingering inclusions to provide superior steel cleanliness and further remove gases such as oxygen, nitrogen and hydrogen. Controlling the rate at which these droplets form and solidify ensures a consistency of chemistry and microstructure throughout the entire VIM-VAR ingot. This in turn makes the steel more resistant to fracture and/or fatigue. This refinement process is essential to meet the performance characteristics of parts like a helicopter rotor shaft, a flap actuator on a military jet or a bearing in a jet engine. For some commercial or military applications, iron-based steel alloys may go through only one vacuum remelt, namely the VAR. For example, steels for solid rocket cases, landing gears or torsion bars for fighting vehicles typically involve the one vacuum remelt. Vacuum arc remelting is also used in production of titanium and other metals which are reactive or in which high purity is required. References
|
|||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Electric_arc_furnace". A list of authors is available in Wikipedia. |