To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Effective field theoryIn physics, an effective field theory is an approximate theory (usually a quantum field theory) that contains the appropriate degrees of freedom to describe physical phenomena occurring at a chosen length scale, but ignores the substructure and the degrees of freedom at shorter distances (or, equivalently, higher energies). Additional recommended knowledgePresently, effective field theories are discussed in the context of the renormalization group (RG) where the process of integrating out short distance degrees of freedom is made systematic. Although this method is not sufficiently concrete to allow the actual construction of effective field theories, the gross understanding of their usefulness becomes clear through an RG analysis. This method also lends credence to the main technique of constructing effective field theories, through the analysis of symmetries. If there is a single mass scale M in the microscopic theory, then the effective field theory can be seen as an expansion in 1/M. This technique is useful for scattering or other processes where the maximum momentum scale k satisfies the condition k/M<<1. Since effective field theories are not valid at small length scales, they need not be renormalizable. The most well-known example of an effective field theory is the Fermi theory of beta decay. This theory was developed during the early study of weak decays of nuclei when only the hadrons and leptons undergoing weak decay were known. The typical reactions studied were: This theory posited a pointlike interaction between the four fermions involved in these reactions. The theory had great phenomenological success and was eventually understood to arise from the gauge theory of electroweak interactions, which forms a part of the standard model of particle physics. In this more fundamental theory, the interactions are mediated by a flavour-changing gauge boson, the W±. The immense success of the Fermi theory was because the W particle has mass of about 80 GeV, whereas the early experiments were all done at an energy scale of less than 10 MeV. Such a separation of scales, by over 3 orders of magnitude, has not been met in any other situation as yet. Another famous example is the BCS theory of superconductivity. In this case the underlying theory is the theory of electrons in a metal interacting with lattice vibrations called phonons. The phonons cause attractive interactions between appropriate electrons, causing them to form Cooper pairs. The length scale of these pairs is much larger than the wavelength of phonons. As a result, it is possible to neglect the dynamics of phonons and construct a theory in which two electrons interact at a point. This is the BCS theory, which has had remarkable success in describing and predicting the results of experiments. Presently, effective field theories are written for many situations.
See also
References and external links
Categories: Statistical mechanics | Condensed matter physics |
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Effective_field_theory". A list of authors is available in Wikipedia. |