My watch list
my.chemeurope.com  
Login  

Dye penetrant inspection




 

Dye penetrant inspection (DPI), also called liquid penetrant inspection (LPI), is a widely applied and low-cost inspection method used to locate surface-breaking defects in all non-porous materials (metals, plastics, or ceramics). Penetrant may be applied to all non-ferrous materials, but for inspection of ferrous components magnetic-particle inspection is preferred for its subsurface detection capability. LPI is used to detect casting and forging defects, cracks, and leaks in new products, and fatigue cracks on in-service components.

Contents

Principles

DPI is based upon capillary action, where low surface tension fluid penetrates into clean and dry surface-breaking discontinuities. Penetrant may be applied to the test component by dipping, spraying, or brushing. After adequate penetration time has been allowed, the excess penetrant is removed, and a developer is applied. The developer helps to draw penetrant out of the flaw where a visible indication becomes visible to the inspector. Inspection is performed under ultraviolet or white light, depending upon the type of dye used - fluorescent or nonfluorescent (visible).

Materials

Penetrants are classified into sensitivity levels. Visible penetrants are typically red in color, and represent the lowest sensitivity. Fluorescent penetrants contain two or more dyes that fluoresce when excited by ultraviolet (UV-A) radiation (also known as black light). Since FPI is performed in a darkened environment, and the excited dyes emit brilliant yellow-green light that contrasts strongly against the dark background, this material is more sensitive to small defects.

When selecting a sensitivity level one must consider many factors, including the environment under which the test will be performed, the surface finish of the specimen, and the size of defects sought. One must also assure that the test chemicals are compatible with the sample so that the examination will not cause permanent staining, or degradation. This technique can be quite portable, because in its simplest form the inspection requires only 3 aerosol spray cans, some paper towels, and adequate visible light. Stationary systems with dedicated application, wash, and development stations, are more costly and complicated, but result in better sensitivity and higher sample through-put.

Inspection Steps

Below are the main steps of Liquid Penetrant Inspection:

1. Pre-cleaning:

The test surface is cleaned to remove any dirt, paint, oil, grease or any loose scale that could either keep penetrant out of a defect, or cause irrelevant or false indications. Cleaning methods may include solvents, alkaline cleaning steps, vapor degreasing, or media blasting. The end goal of this step is a clean surface where any defects present are open to the surface, dry, and free of contamination.

2. Application of Penetrant:

The penetrant is then applied to the surface of the item being tested. The penetrant is allowed time to soak into any flaws (generally 10 to 30 minutes). The soak time mainly depends upon the material being testing and the size of flaws sought. As expected, smaller flaws require a longer penetration time. Due to their incompatible nature one must be careful not to apply visible red dye penetrant to a sample that may later be inspected with fluorescent penetrant.

3. Excess Penetrant Removal:

The excess penetrant is then removed from the surface. Removal method is controlled by the type of penetrant used. Water-washable, solvent-removable, lipophilic post-emulsifiable, or hydrophilic post-emulsifiable are the common choices. Emulsifiers represent the highest sensitivity level, and chemically interact with the oily penetrant to make it removable with a water spray. When using solvent remover and lint-free cloth it is important to not spray the solvent on the test surface directly, because this can the remove the penetrant from the flaws. This process must be performed under controlled conditions so that all penetrant on the surface is removed (background noise), but penetrant trapped in real defects remains in place.

4. Application of Developer:

After excess penetrant has been removed a white developer is applied to the sample. Several developer types are available, including: non-aqueous wet developer, dry powder, water suspendible, and water soluble. Choice of developer is governed by penetrant compatibility (one can't use water-soluble or suspedible developer with water-washable penetrant), and by inspection conditions. When using non-aqueous wet developer (NAWD) or dry powder the sample must be dried prior to application, while soluble and suspendible developers are applied with the part still wet from the previous step. NAWD is commercially available in aerosol spray cans, and may employ acetone, isopropyl alcohol, or a propellant that is a combination of the two. Developer should form a thin, even coating on the surface.

The developer draws penetrant from defects out onto the surface to form a visible indication, a process similar to the action of blotting paper. Any colored stains indicate the positions and types of defects on the surface under inspection.

5. Inspection:

The inspector will use visible light with adequate intensity (100 foot-candles is typical) for visible dye penetrant. Ultraviolet (UV-A) radiation of adequate intensity (1,000 micro-watts per centimeter squared is common), along with low ambient light levels (less than 2 foot-candles) for fluorescent penetrant examinations. Inspection of the test surface should take place after a 10 minute development time. This time delay allows the blotting action to occur. The inspector may observe the sample for indication formation when using visible dye, but this should not be done when using fluorescent penetrant. Also of concern, if one waits too long after development the indications may "bleed out" such that interpretation is hindered.

6. Post Cleaning:

The test surface is often cleaned after inspection and recording of defects (if found), especially if post-inspection coating processes are scheduled.

Features

  • The flaws are more visible, because:
    • The defect indication has a high visual contrast (e.g. red dye against a white developer background, or a bright fluorescent indication against a dark background).
    • The developer draws the penetrant out of the flaw over a wider area than the real flaw, so it looks wider.
  • Limited training is required for the operator — although experience is quite valuable.
  • Low testing costs.
  • Proper cleaning is necessary to assure that surface contaminants have been removed and any defects present are clean and dry. Some cleaning methods have been shown to be detrimental to test sensitivity, so acid etching to remove metal smearing and re-open the defect may be necessary.
  • Penetrant dyes stain cloth, skin and other porous surfaces brought into contact. One should verify compatibility on the test material, especially when considering the testing of plastic components.
  • Further information on inspection steps may be found in industry standards (e.g. the American Welding Society, American Society for Testing and Materials, the British Standards Institute, and the Society for Automotive Engineers).

    ss

    Manufacturers

    • Ely Chemical Company
    • Magnaflux
    • Sherwin
    • Tiede
    • Tema Flux srl
    • Advanced NDT Ltd
    • [1] - an article on how to perform a sensitive visible dye penetrant examination
     
    This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Dye_penetrant_inspection". A list of authors is available in Wikipedia.
    Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE