To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Dihydrogen complexDihydrogen complexes are coordination complexes containing intact H2 as a ligand.[1] The prototypical complex is W(CO)3(P(Cy)3)2(H2). This class of compounds represent intermediates in metal-catalyzed reactions involving hydrogen. Hundreds of dihydrogen complexes have been reported. Most examples are cationic transition metals complexes with octahedral geometry. Upon complexaton, the H-H bond is extended to 0.81-0.82 Å as indicated by neutron diffraction, about a 10% extension relative to the H-H bond in free H2. Some complexes containing multiple hydrogen ligands, i.e. polyhydrides, also exhibit short H---H contacts. It has been suggested that distances < 1.00 Å indicates signficant dihydrogen character, where separations > 1 Å are better described as dihydrido complexes (see figure). Additional recommended knowledge
CharacterizationThe preferred method of characterization of dihydrogen complexes is neutron diffraction. Neutrons interact strongly with hydrogen atoms, which allows one to infer their location in a crystal. In some cases, hydrogen ligands are usefully characterized by X-ray crystallography, but often the presence of metals, which strongly scatter X-rays, complicates the analysis. NMR techniques are also widely used. The magnitude of spin-spin coupling is a useful indicator of the strength of the bond between the hydrogen and deuterium in HD complexes. Dihydrogen-complexes typically have longer 1H-spin-lattice relaxation times than the corresponding dihydrides. SynthesisTwo preparation methods involve the direct reactions with H2 gas. The first entails the addition of H2 to an unsaturated metal center, as originally reported for W(CO)3(P-i-Pr3)2(H2). In some cases, H2 will displace weakly bound ligands, sometimes even halides in favorable cases:
Many metal hydrides can be protonated to give dihydrogen complexes:
In such cases the acid usually is derived from a weakly coordinating anion. HistoryIn 1984, Kubas et al. discovered that the addition of H2 to purple-colored species M(CO)3(PR3)2 gave a yellow precipitate of mer-trans- M(CO)3(PR3)2(H2) (M = Mo or W; R = cyclohexyl, iso-propyl).[2] This result rapidly led to the discovery of a variety of related complexes such as Cr(H2)(CO)5[3] and [Fe(H2)(H)(dppe)2]+.[4] Kubas et al's findings also led to a reevaluation of previously described compounds. For example, the complex "RuH4(PPh3)3" described in 1968 was reformulated as a dihydrogen complex. See also Dihydrogen bond See also Agostic interaction References
Further reading
ed., Transition Metal Hydrides, VCH, New York, 1992, pp. 149-184
Categories: Chemical bonding | Inorganic chemistry |
|
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Dihydrogen_complex". A list of authors is available in Wikipedia. |