To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
De Sitter double star experimentAccording to simple emission theory, light thrown off by an object should move at a speed of c with respect to the emitting object. Additional recommended knowledgeIf there are no complicating dragging effects, the light would then be expected to move at this same speed until it eventually reached an observer. For an object moving directly towards (or away from) the observer at v metres per second, this light would then be expected to still be travelling at (c + v) ( or (c − v) ) metres per second by the time it reached us. Willem de Sitter argued that if this was true, a star in a double-star system would usually have an orbit that caused it to have alternating approach and recession velocities, and light emitted from different parts of the orbital path would then travel towards us at different speeds. For a nearby star with a small orbital velocity (or whose orbital plane was almost perpendicular to our line of view) this might merely make the star's orbit seem erratic, but for a sufficient combination of orbital speed and distance (and inclination), the "fast" light given off during approach would be able to catch up with and even overtake "slow" light emitted earlier during a recessional part of the star's orbit, and the star would present an image that was scrambled and out of sequence. De Sitter made a study of double stars (1913) and found no cases where the stars' images appeared scrambled. Since the total flight-time difference between "fast" and "slow" lightsignals would be expected to scale linearly with distance in simple emission theory, and the study would (statistically) have included stars with a reasonable spread of distances and orbital speeds and orientations, deSitter concluded that the effect should have been seen if the model was correct, and its absence meant that basic emission theory was almost certainly wrong. Notes
References
|
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "De_Sitter_double_star_experiment". A list of authors is available in Wikipedia. |