To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
DNA polymerase III holoenzyme
DNA polymerase III holoenzyme is the primary enzyme complex involved in prokaryotic DNA replication. It was discovered by Thomas Kornberg (son of Arthur Kornberg) and Malcolm Gefter in 1970. The complex has high processivity (i.e. the number of nucleotides added per binding event) and, specifically referring to the replication of the E.coli genome, works in conjunction with four other DNA polymerases (Pol I, Pol II, Pol IV, and Pol V). Being the primary holoenzyme involved in replication activity, the DNA Pol III holoenzyme also has proofreading capabilities that correct replication mistakes by means of exonuclease activity working 3'->5'. DNA Pol III is a component of the replisome, which is located at the replication fork. Additional recommended knowledge
ComponentsThe replisome is composed of the following:
ActivityDNA polymerase III activity begins after strand separation at the origin of replication. Synthesis of primerBecause DNA synthesis cannot start de novo, a RNA primer, complementary to part of the single-stranded DNA, is synthesized from primase(a RNA polymerase): ("!" for RNA, '"$" for DNA, "*" for polymerase) --------> * * * * ! ! ! ! _ _ _ _ _ _ _ _ | RNA | <--ribose (sugar)-phosphate backbone G U A U | Pol | <--RNA primer * * * * |_ _ _ _| <--hydrogen bonding C A T A G C A T C C <--template ssDNA (single-stranded DNA) _ _ _ _ _ _ _ _ _ _ <--deoxyribose (sugar)-phosphate backbone $ $ $ $ $ $ $ $ $ $ Addition onto 3'OHAs replication progresses and the replisome moves forward, DNA polymerase III arrives at the RNA primer and begins replicating the DNA, adding onto the 3'OH left by the primer: * * * * ! ! ! ! _ _ _ _ _ _ _ _ | DNA | <--ribose (sugar)-phosphate backbone G U A U | Pol | <--RNA primer * * * * |_III_ _| <--hydrogen bonding C A T A G C A T C C <--template ssDNA (single-stranded DNA) _ _ _ _ _ _ _ _ _ _ <--deoxyribose (sugar)-phosphate backbone $ $ $ $ $ $ $ $ $ $ Synthesis of DNADNA polymerase III will then synthesize a continuous or discontinuous strand of DNA, depending if this is occurring on the leading or lagging strand(Okazaki fragment) of the DNA. DNA polymerase III has a high processivity and therefore, synthesizes DNA very quickly. This high processivity is due in part to the β-clamps that "hold" onto the DNA strands. -----------> * * * * ! ! ! ! $ $ $ $ $ $ _ _ _ _ _ _ _ _ _ _ _ _ _ _| DNA | <--deoxyribose (sugar)-phosphate backbone G U A U C G T A G G| Pol | <--RNA primer * * * * * * * * * *|_III_ _| <--hydrogen bonding C A T A G C A T C C <--template ssDNA (single-stranded DNA) _ _ _ _ _ _ _ _ _ _ <--deoxyribose (sugar)-phosphate backbone $ $ $ $ $ $ $ $ $ $ Removal of primerAfter replication of the desired region, the RNA primer is removed by DNA polymerase I via the process of nick translation. The removal of the RNA primer allows DNA ligase to ligate the DNA-DNA nick between the new fragment and the previous strand. DNA polymerase I & III, along with many other enzymes are all required for the high fidelity, high-processivity of DNA replication. See also
Categories: EC 2.7.7 | DNA replication | Enzymes |
|||||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "DNA_polymerase_III_holoenzyme". A list of authors is available in Wikipedia. |