To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Quadrupole ion trapA quadrupole ion trap exists in both linear and 3D (Paul Trap, QIT) varieties and refers to an ion trap that uses DC and radio frequency (RF) oscillating AC electric fields to trap ions. It is a component of a mass spectrometer that would use such a trap to analyze ions. The invention of the 3D quadrupole ion trap itself is attributed to Wolfgang Paul who shared the Nobel Prize in Physics in 1989 for this work.[1][2] Additional recommended knowledge
TheoryThe 3D trap itself generally consists of two hyperbolic metal electrodes with their foci facing each other and a hyperbolic ring electrode halfway between the other two electrodes. The ions are trapped in the space between these three electrodes by AC (oscillating, non-static) and DC (non-oscillating, static) electric fields. The AC radio frequency voltage oscillates between the two hyperbolic metal end cap electrodes if ion excitation is desired; the driving AC voltage is applied to the ring electrode. The ions are first pulled up and down axially while being pushed in radially. The ions are then pulled out radially and pushed in axially (from the top and bottom). In this way the ions move in a complex motion that generally involves the cloud of ions being long and narrow and then short and wide, back and forth, oscillating between the two states. Since the mid-1980's most 3D traps (Paul traps) have used ~1 mtorr of helium. The use of damping gas and the mass-selective instability mode developed by Stafford et al. led to the first commercial 3D ion traps.[3] The quadrupole ion trap has two configurations: the three dimensional form described above and the linear form made of 4 parallel electrodes. The advantage of this design is in its simplicity, but this leaves a particular constraint on its modeling. To understand how this originates, it is helpful to visualize the linear form. The Paul trap is designed to create a saddle-shaped field to trap a charged ion, but with a quadrupole, this saddle-shaped electric field cannot be rotated about an ion in the centre. It can only 'flap' the field up and down. For this reason, the motions of a single ion in the trap are described by the Mathieu Equations. These equations can only be solved numerically, or equivalently by computer simulations. The intuitive explanation and lowest order approximation is the same as strong focusing in accelerator physics. Since the field affects the acceleration, the position lags behind (to lowest order by half a period). So the particles are at defocused positions when the field is focusing and visa versa. Being farther from center, they experience a stronger field when the field is focusing than when it is defocusing. Linear ion trapLinear ion trap use a set of quadrupole rods to confine ions radially and a static electrical potential on end electrodes to confine the ions axially.[4] The linear form of the trap can be used as a selective mass filter, or as an actual trap by creating a potential well for the ions along the axis of the electrodes.[5] Advantages of the linear trap design are increased ion storage capacity, faster scan times, and simplicity of construction (although quadrupole rod alignment is critical, adding a quality control constraint to their production. This constraint is additionally present in the machining requirements of the 3D trap).[6] Thermo Fisher's LTQ is an example of the Linear ion trap. LTQ stands for Linear Trap Quadrupole, and not Linear Triple Quadruple as some might think (Ref. call to ThermoFisher's World Headquarters by JP) Cylindrical ion trapCylindrical ion traps have a cylindrical rather than a hyperbolic ring electrode.[7][8][9][10] This configuration has been used in miniature arrays of traps. References
Bibliography
Patents
|
|
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Quadrupole_ion_trap". A list of authors is available in Wikipedia. |