To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Caesium-135
Caesium-135 has a half-life of 2.3 million years, undergoing low-energy beta decay to barium-135. It is one of only 7 long-lived fission products, and one of the 3 abundant ones. 135Cs's low decay energy, lack of gamma radiation, and long half-life, make this isotope less hazardous than Cs-137 or Cs-134. Additional recommended knowledgeIts precursor Xenon-135 has a high fission yield of 6.3333%, but also has the highest known neutron capture cross section of any nuclide, so some of the Xe-135 produced in a nuclear reactor (as much as >90% at steady-state full power [1]) will be converted to stable Xenon-136 before it can decay to Cs-135. A much smaller amount of 135Cs will also be produced from nonradioactive fission product Cesium-133 by successive neutron capture to Cs-134 and then Cs-135. 135Cs's thermal neutron capture cross section and resonance integral are 8.3±0.3 and 38.1±2.6 barns respectively. [2] Disposal of Cs-135 by nuclear transmutation is difficult, because of the low cross section, because neutron irradiation of mixed-isotope fission cesium produces more Cs-135 from stable Cs-133, and because the intense medium-term radioactivity of Cs-137 makes handling difficult. [3] See also
Categories: Isotopes of caesium | Fission products |
||||||||||||||||||||||||||||||||||||||||||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Caesium-135". A list of authors is available in Wikipedia. |