To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Cristobalite
Additional recommended knowledge
The mineral cristobalite is a high-temperature polymorph of quartz and tridymite. It occurs as white octahedra in acidic volcanic rocks and in converted diatomaceous deposits in the Monterey Formation of California and similar areas. Cristobalite is stable only above 1470 degrees Celsius, but can crystallize and persist metastably at lower temperatures. The persistence of cristobalite outside of its thermodynamic stability range occurs because the transition from cristobalite to quartz or tridymite is "reconstructive", requiring the breaking up and reforming of the silica framework. These frameworks are composed of SiO4 tetrahedra in which every oxygen atom is shared with a neighbouring tetrahedron, so that the chemical formula of silica is SiO2. The breaking of these bonds required to convert cristobalite to tridymite and quartz requires considerable activation energy and may not happen on a human time frame. Framework silicates are also known as tectosilicates. There is more than one form of the cristobalite framework. At high temperatures the structure is cubic. A tetragonal form of cristobalite occurs on cooling below ca. 250 ªC at ambient pressure, and is related to the cubic form by a static tilting of the silica tetrahedra in the framework. This transition is variously called the low-high or α − β transition. It may be termed "displacive"; i.e., it is not generally possible to prevent the cubic β-form from becoming tetragonal by rapid cooling. Under rare circumstances the cubic form may be preserved if the crystal grain is pinned in a matrix that does not allow for the considerable spontaneous strain that is involved in the transition, which causes a change in shape of the crystal. This transition is highly discontinuous. The exact transition temperature depends on the crystallinity of the cristobalite sample, which itself depends on factors such as how long it has been annealed at a particular temperature. The cubic β-phase consists of dynamically disordered silica tetrahedra. The tetrahedra remain fairly regular and are displaced from their ideal static orientations due to the action of a class of low-frequency phonons called rigid unit modes. It is the "freezing" of one of these rigid unit modes that is the soft mode for the α–β transition. In the α–β phase transition only one of the three degenerate cubic crystallographic axes retains a four-fold rotational axis in the tetragonal form. The choice of axis is arbitrary, so that various twins can form within the same grain. These different twin orientations coupled with the discontinuous nature of the transition can cause considerable mechanical damage to materials in which cristobalite is present and that pass repeatedly through the transition temperature, such as refractory bricks. When devitrifying silica, cristobalite is usually the first phase to form, even when well outside of its thermodynamic stability range. The dynamically disordered nature of the β-phase is partly responsible for the low enthalpy of fusion of silica. The micrometre-scale spheres that make up precious opal are made of cristobalite, crystallized metastably at low temperature. References
Categories: Silicate minerals | Quartz varieties |
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Cristobalite". A list of authors is available in Wikipedia. |