To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Costa's minimal surface
Additional recommended knowledgeIn topology, Costa's minimal surface is an embedded minimal surface and was discovered in 1982 by the Brazilian mathematician Celso Costa. It is also a surface of finite topology, which means that it can be formed by puncturing a compact surface. Topologically, it is a thrice-punctured torus. Until its discovery, only the plane, helicoid and the catenoid were believed to be embedded minimal surfaces that could be formed by puncturing a compact surface. The Costa surface evolves from a torus, which is deformed until the planar end becomes catenoidal. Defining these surfaces on rectangular tori of arbitrary dimensions yields the Costa surface. Its discovery triggered research and discovery into several new surfaces and open conjectures in topology. The Costa surface can be described using the Weierstrass zeta and the Weierstrass elliptic functions. References
See also
|
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Costa's_minimal_surface". A list of authors is available in Wikipedia. |