To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Coherence lengthIn physics, coherence length is the propagation distance from a coherent source to a point where an electromagnetic wave maintains a specified degree of coherence. The significance is that interference will be strong within a coherence length of the source, but not beyond it. This concept is also commonly used in telecommunication engineering. Additional recommended knowledgeIn long-distance transmission systems, the coherence length may be reduced by propagation factors such as dispersion, scattering, and diffraction. In radio-band systems, the coherence length is approximated by
where c is the speed of light in a vacuum, n is the refractive index of the medium, and Δf is the bandwidth of the source. In optical communications, the coherence length L is given approximately by
where λ is the central wavelength of the source, n is the refractive index of the medium, and Δλ is the spectral width of the source. Coherence length is usually applied to the optical regime. The expression above is a frequently used approximation. Due to ambiguities in the definition of spectral width of a source, however, the following definition of coherence length has been suggested[citation needed]: The coherence length is the optical path length difference of a self-interfering laserbeam which corresponds to a 50% fringe visibility, where the fringe visibility is defined as
where I is the fringe intensity. Helium-neon lasers have a typical coherence length of 20 cm, while semiconductor lasers reach some 100 m. Fiber lasers can have coherence lengths exceeding 100 km. See also
References
|
||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Coherence_length". A list of authors is available in Wikipedia. |