To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Brayton cycleThe Brayton cycle is a constant-pressure cycle named after George Brayton (1830–1892), the American engineer who developed it. It is also sometimes known as the Joule cycle. It was originally proposed by Barber in 1791. The Ericsson cycle is also similar but uses external heat and incorporates the use of a regenerator. Additional recommended knowledge
HistoryIn 1872 George Brayton applied for a patent for his Ready Motor. The engine used a separate piston compressor and expander. The compressed air was heated by internal fire as it entered the expander cylinder. Today the term Brayton cycle is generally associated with the gas turbine even though Brayton never built anything other than piston engines. Like other internal combustion power cycles, The Brayton cycle is an open system, though for thermodynamic analysis it is conventionally assumed that the exhaust gases are reused in the intake, enabling analysis as a closed system. ModelA Brayton-type engine consists of three components:
In the original 19th-century Brayton engine, ambient air is drawn into a piston compressor, where it is compressed; ideally an isentropic process. The compressed air then runs through a mixing chamber where fuel is added, a constant-pressure isobaric process. The heated (by compression), pressurized air and fuel mixture is then ignited in an expansion cylinder and energy is released, causing the heated air and combustion products to expand through a piston/cylinder; another theoretically isentropic process. Some of the work extracted by the piston/cylinder is used to drive the compressor through a crankshaft arrangement.[1] The term Brayton cycle has more recently been given to the gas turbine engine. This also has three components:
Ideal Brayton cycle:
Actual Brayton cycle:
Since neither the compression nor the expansion can be truly isentropic, losses through the compressor and the expander represent sources of inescapable working inefficiencies. In general, increasing the compression ratio is the most direct way to increase the overall power output of a Brayton system. [1] Here are two plots, Figure 1 and Figure 2, for the ideal Brayton cycle. One plot indicates how the cycle efficiency changes with an increase in pressure ratio, while the other indicates how the specific power output changes with an increase in the gas turbine inlet temperature for two different pressure ratio values. In 2002 a hybrid open solar Brayton cycle was operated for the first time consistently and effectively with relevant papers published, in the frame of the EU SOLGATE program. The air was heated from 570 K to over 1000 K into the combustor chamber. Methods to improve efficiencyThe efficiency of a Brayton engine can be improved in the following manners:
Reverse Brayton cycleA Brayton cycle that is driven in reverse, via net work input, and when air is the working fluid, is the air refrigeration cycle or Bell Coleman cycle. Its purpose is to move heat, rather than produce work. This air cooling technique is used widely in jet aircraft. References
See also
|
|||||||||||||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Brayton_cycle". A list of authors is available in Wikipedia. |