My watch list
my.chemeurope.com  
Login  

Biosolids



Biosolids is a term used by the water treatment industry that refers to treated sludge. Sludge, or "biosolids," are the byproduct of the treatment of domestic wastewater in a wastewater treatment plant. To create biosolids, these residuals are further treated to reduce pathogens and vector attraction by any of a number of approved methods. Nevertheless, toxic chemicals, such as PCBs, dioxin, and brominated flame retardants, remain in the "treated" sludge, as there is no technology available to remove these and tens of thousands of other chemicals from sewage sludge, the byproduct of wastewater treatment. Depending on their level of treatment and resultant pollutant content, biosolids can be used in regulated applications ranging from soil conditioning to fertilizer for food or non-food agriculture to distribution for unlimited use.

Contents

History of the term

The term biosolids was formally recognized in 1991 by the Water Environment Federation (WEF). WEF, founded in 1928, is a not-for-profit technical and educational organization with members from varied disciplines (e.g. wastewater treatment operators and engineers) who work for the preservation and enhancement of the global water environment. WEF was formerly known as the "Federation of Sewage Works Associations." Biosolids is the term created in 1991 by the Name Change Task Force at WEF to differentiate raw, untreated sewage sludge from treated and tested sewage sludge that can be beneficially utilized as soil amendment and fertilizer. The term "biosolids" also helps make the land application of processed sewage sludge more acceptable to the public. The proposal to create a "Name Change Task Force" originated with Peter Machno, manager of Seattle's sludge program, after protesters mobilized against his plan to spread sludge on local tree farms. "If I knocked on your door and said I've got this beneficial product called sludge, what are you going to say?" he asked. At Machno's suggestion, the Federation newsletter published a request for alternative names. Members sent in over 250 suggestions, including "all growth," "purenutri," "biolife," "bioslurp," "black gold," "geoslime," "sca-doo," "the end product," "humanure," "hu-doo," "organic residuals," "bioresidue," "urban biomass," "powergro," "organite," "recyclite," "nutri-cake" and "ROSE," short for "recycling of solids environmentally." [19] In June of 1991, the Name Change Task Force finally settled on "biosolids," which it defined as the "nutrient-rich, organic byproduct of the nation's wastewater treatment process."

The new name attracted sarcastic comment from the Doublespeak Quarterly Review, edited by Rutgers University professor William Lutz. "Does it still stink?" Lutz asked. He predicted that the new name "probably won't move into general usage. It's obviously coming from an engineering mentality. It does have one great virtue, though. You think of `biosolids' and your mind goes blank."

According to Machno, the name change was not intended to "cover something up or hide something from the public. . . . We're trying to come up with a term . . . that can communicate to the public the value of this product that we spend an awful lot of money on turning into a product that we use in a beneficial way."

Processes

During waste water treatment, bacteria and other microorganisms break down components in wastewater into simpler and more stable forms of organic matter. Non-organic matter also settles into sludge. For instance, small amounts (parts per million) of heavy metals and other potentially toxic materials, including flame retardants (PBDEs) and persistent organic pollutants, are commonly found in sewage sludge in parts per million levels. What does not settle into sludge leaves the treatment facility as a treated wastewater effluent. Biosolids in their liquid form look like muddy water and contain 1-10% solids. Biosolids may be dewatered in a second step of the treatment process, which turns it into a "cake" with the texture of a wet sponge. In this stage it contains 11-40% solids.

Biosolids in the USA

According to US EPA, biosolids that meet treatment and pollutant content criteria "can be safely recycled and applied as fertilizer to sustainably improve and maintain productive soils and stimulate plant growth." After the 1991 Congressional ban on ocean dumping, the US EPA promulgated regulations - 40 CFR Part 503 - that continued to allow for the use of biosolids on land as fertilizers and soil amendments (prior regulations, the Part 257, had allowed such uses). This is a highly controversial policy decision that has been contested since its inception. EPA promoted biosolids recycling throughout the 1990s. The EPA's Part 503 regulations were developed with input from university, EPA, and USDA researchers from around the country and involved an extensive review of the scientific literature and the largest risk assessment the agency had conducted to that time. Still, many academics, government researchers, and citizens contest EPA's conclusions about the safety of land applying sewage sludge. The Part 503 regulations became effective in 1993.

In the United States municipal wastewater treatment plants annually produced about 7.7 million dry tons of biosolids in 1997, and about 6.8 million dry tons in 1998 according to sources relying on USEPA estimates. According to the NRC, about 5.6 million dry tons was the normal US annual biosolids production rate as of 2002.

In the United States, as of 2002, about 60% of all biosolids are applied to land as soil amendment and fertilizer for growing crops. Biosolids that meet the Class B pathogen treatment and pollutant criteria, in accordance with the US EPA "Standards for the use or disposal of sewage sludge," (40 CFR Part 503) can be land applied with formal site restrictions and strict record keeping. Biosolids with lower pollutant content have fewer restrictions. Biosolids that meet Class A pathogen reduction requirements or equivalent treatment by a Process to Further Reduce Pathogens (PFRP) have the least restrictions on use. PFRPs include composting, heat drying, heat treatment, thermophilic aerobic digestion, beta or gamma ray irradiation and pasteurization. Processes to reduce pathogens have no effect on heavy metals and may or may not have effects on the levels of other trace pollutants in biosolids.

EPA policy on sewage sludge recycling is controversial. Often thought to consist of only "human waste," treated sewage sludge or "biosolids" contains any contaminants from sewage that are not broken down in the treatment process or which do not remain with the water effluent leaving the treatment plant. The most commonly detected trace contaminants of concern are heavy metals (arsenic, cadmium, copper, etc.) and toxic chemicals (e.g. widely used plasticizers, PDBEs, etc.). Pathogens are also a significant health issue.

Over the years there have been thousands of reported incidents of harm caused by biosolids use on land. Symptoms have characteristically included: asthma, weight loss, fatigue, eye irritations, flu-like symptoms, gastrointestinal complications, headaches, immunodeficiency problems, lesions, nausea, nosebleeds, rashes, respiratory complications, abscesses, reproductive complications, cysts, and tumors. Currently there is no formal tracking system for complaints related to sewage sludge. EPA has never conducted an epidemiological study, though thousands of people have complained of health problems as a result of living near land applied sites. Some deaths have been reported.

The EPA categorically denies that land applied sewage sludge is harmful. But the claim of harm to animals and land was recently litigated to judgment by at least one court in the United States.10 On June 24, 2003, after reviewing detailed evidence, a Richmond County, Georgia jury found that sewage sludge from the city of Augusta was responsible for killing cows and damaging farmland at the Boyce family farm.

The National Research Council published "Biosolids Applied to Land: Advancing Standards and Practices" in July 2002. They concluded that there is no documented scientific evidence that biosolids regulations have failed to protect public health, but there is persistent uncertainty on possible adverse health effects. The NRC noted that further research is needed and made about 60 recommendations for addressing public health concerns, scientific uncertainties, and data gaps in the science underlying the sewage sludge standards. EPA responded with commitment to conduct research addressing the most important, but not all, of the NRC recommendations.

The EPA Office of the Inspector General (OIG) completed two assessments in 2000 and 2002 of the EPA sewage sludge program. The 2000 report declared that the EPA did not have an "effective program for ensuring compliance with the land application requirements of the Sludge Rule." This report further documented that EPA performed "virtually no inspections" of land application sites and few inspections of treatment plants or land appliers.” The report also documented the lack of resources committed to sludge and the low priority placed on the sludge program by the EPA. The follow-up report in 2002 documented that "EPA cannot assure the public that current land application practices are protective of human health and the environment." The report also documented that there had been an almost 50% reduction in EPA enforcement resources since the earlier assessment. The report documented EPA’s failure to create formal processes for tracking and responding to human health complaints related to land application of sludge.

Biosolids in the European Union

In Europe, the recycling of biosolids (treated sewage sludge) to agriculture is practised widely. It is supported by the European Commission and many European governments and, in most circumstances, this beneficial re-use is regarded as the best environmental option. Over 40% of all sewage sludge produced in the EU is recycled to agricultural land (based on data from the European Commission from 1999-2000) although the actual rate varies considerably from country to country. In countries such as France, Spain, the UK, Denmark and Luxemburg over 50% of production is recycled to land.

The process is well regulated, though highly controversial, principally under the 1986 EU Sludge Directive (86/27/EEC). The main objective of the Directive is the control of heavy metals (PTEs), thought to be the main contaminants of concern when biosolids are being applied to land. The regulatory controls introduced address the potential impact of biosolids addition to soil from both the immediate application and also any possible cumulative effects.

In the UK, the EU Sludge Directive is implemented through the Sludge (Use in Agriculture) Regulations 1989. These Regulations are supported by a detailed Code of Practice that describes all aspects of biosolids recycling to land. The regulations set permissible limits for soil concentrations and rates of annual additions of PTEs. The allowable limits for Zn, Cu and Ni in soils vary with the pH of the soil.

Since 1998 the UK water industry has also complied with the additional requirements of the Safe Sludge Matrix. This is a voluntary agreement made between the UK water and sewerage operators, the British Retail Consortium (BRC), representing the major retailers, and a range of other stakeholders. The matrix introduced strict controls on the microbiological quality of sludge and specified procedures to be adopted for its application to agricultural land used to grow food crops. The use of untreated sludge on agricultural land for food production was phased out in 1999 and the use of untreated sludge on agricultural land used to grow non-food crops was phased out in 2005. The provisions of the Matrix go beyond the requirements of the Sludge (Use in) Agriculture Regulations as they currently stand.

Water Companies in the UK have also adopted HACCP (Hazard Analysis and Critical Control Point) procedures for sludge stream management. HACCP procedures apply risk assessment and process control to manage and reduce risk, ensuring that the pathogen reduction requirements specified by the Safe Sludge Matrix are met, formalising record keeping and maintaining quality control. Further information on recycling biosolids to land can be found in the document Recycling Biosolids to Land on the WaterUK website.

Further legislation is on the horizon in the form of a revision to the 1986 EU Sludge Directive. The Commission’s intention is to propose guidelines on sustainable practices for the application of treated sludge (biosolids) onto land. In this context, it will also be assessed whether the scope of the revised directive should be broadened to other non-hazardous sludges and to applications other than in agriculture. The aim of the revision to the Directive will be, on the one hand, to encourage the sustainable use of properly treated sludge and, on the other, to strengthen the controls applied in order to guarantee that both professional users and the public in general have increased confidence in the practice of recycling biosolids to land.

References

    See also

    • Digestate
    • More on the history and widespread usage of the term "biosolids:" http://www.nebiosolids.org/shownews.html?id=263
     
    This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Biosolids". A list of authors is available in Wikipedia.
    Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE