To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Beta-silicon effectThe beta-silicon effect also called silicon hyperconjugation in organosilicon chemistry is a special type of hyperconjugation and describes the stabilizing effect of a silicon atom placed in a position once removed (β) from a carbocation. A prerequisite is an antiperiplanar relationship between the two groups.[1] Silicon hyperconjugation explains specific observations regarding chemical kinetics and stereochemistry of organic reactions with reactants containing silicon. Additional recommended knowledgeThe effect is understood in terms of classical hyperconjugation depicted in structure 3 in scheme 1 or in terms of molecular orbital overlap 1 which is a stabilizing overlap between the empty p-orbital of the carbocation and the filled sigma molecular orbital of the silicon to carbon bond. The alpha-silicon effect is the destabilizing effect of a silicon atom next to a reaction center with a partial positive charge. In a pioneering study by Frank C. Whitmore[2][3] ethyltrichlorosilane (scheme 2) was chlorinated by sulfuryl chloride as chlorine donor and benzoyl peroxide as radical initiator in a radical substitution resulting in chloride monosubstitution to some extent in the α-position (28%, due to steric hindrance of the silyl group) and predominantly in the β-position. By adding sodium hydroxide to the α-substituted compound only the silicon chlorine groups are replaced but not the carbon chlorine group. Addition of alkali to the β-substituted compound on the other hand leads to an elimination reaction with liberation of ethylene. In another set of experiments (scheme 3) the chlorination is repeated with n-propyltrichlorosilane[4] The α-adduct and the γ-adduct are resistant to hydrolysis but the chlorine group in the β-adduct gets replaced by a hydroxyl group.
References
|
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Beta-silicon_effect". A list of authors is available in Wikipedia. |