To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Barium
Barium (pronounced /ˈbɛəriəm/) is a chemical element. It has the symbol Ba, and atomic number 56. Barium is a soft silvery metallic alkaline earth metal. It is never found in nature in its pure form due to its reactivity with air. Its oxide is historically known as baryta but it reacts with water and carbon dioxide and is not found as a mineral. The most common naturally occurring minerals are the very insoluble barium sulfate, BaSO4 (barite), and barium carbonate, BaCO3 (witherite). Benitoite is a rare gem containing barium. Additional recommended knowledge
Notable characteristicsBarium is a metallic element that is chemically similar to calcium but more reactive. This metal oxidizes very easily when exposed to air and is highly reactive with water or alcohol, producing hydrogen gas. Burning in air or oxygen produces not just barium oxide (BaO) but also the peroxide. Simple compounds of this heavy element are notable for their high specific gravity. This is true of the most common barium-bearing mineral, its sulfate barite BaSO4, also called 'heavy spar' due to the high density (4.5 g/cm³). ApplicationsBarium has some medical and many industrial uses:
HistoryBarium (Greek barys, meaning "heavy") was first identified in 1774 by Carl Scheele and extracted in 1808 by Sir Humphry Davy in England. The oxide was at first called barote, by Guyton de Morveau, which was changed by Antoine Lavoisier to baryta, from which "barium" was derived to describe the metal. OccurrenceBecause barium quickly becomes oxidized in air, it is difficult to obtain this metal in its pure form. It is primarily found in and extracted from the mineral barite which is crystallized barium sulfate. Barium is commercially produced through the electrolysis of molten barium chloride (BaCl2)
Isolation (* follow): CompoundsThe most important compounds are barium peroxide, barium chloride, sulfate, carbonate, nitrate, and chlorate. IsotopesNaturally occurring barium is a mix of seven stable isotopes. There are twenty-two isotopes known, but most of these are highly radioactive and have half-lives in the several millisecond to several minute range. The only notable exceptions are 133Ba which has a half-life of 10.51 years, and 137mBa (2.55 minutes). PrecautionsAll water or acid soluble barium compounds are extremely poisonous. At low doses, barium acts as a muscle stimulant, while higher doses affect the nervous system, causing cardiac irregularities, tremors, weakness, anxiety, dyspnea and paralysis. This may be due to its ability to block potassium ion channels which are critical to the proper function of the nervous system. Barium sulfate can be taken orally because it is highly insoluble in water, and is eliminated completely from the digestive tract. Unlike other heavy metals, barium does not bioaccumulate.[1] However, inhaled dust containing barium compounds can accumulate in the lungs, causing a benign condition called baritosis. Oxidation occurs very easily and, to remain pure, barium should be kept under a petroleum-based fluid (such as kerosene) or other suitable oxygen-free liquids that exclude air. Barium acetate could lead to death in high doses. Marie Robards poisoned her father with the substance in Texas in 1993. She was tried and convicted in 1996. References
Categories: Chemical elements | Alkaline earth metals | Barium | Barium compounds | Barium minerals |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Barium". A list of authors is available in Wikipedia. |