My watch list
my.chemeurope.com  
Login  

Atomic and Molecular astrophysics



 

Atomic astrophysics is concerned with performing atomic physics calculations that will be useful to astronomers and using atomic data to interpret astronomical observations. Atomic physics plays a key role in astrophysics as astronomers' only information about a particular object comes through the light that it emits, and this light arises through atomic transitions.

Molecular astrophysics concerns the study of emission from molecules in space. There are 110 currently known interstellar molecules. These molecules have large numbers of observable transitions. Lines may also be observed in absorption--for example the highly redshifted lines seen against the gravitationally lensed quasar PKS1830-211. High energy radiation, such as ultraviolet light, can break the molecular bonds which hold atoms in molecules. In general then, molecules are found in cool astrophysical environments. The most massive objects in our Galaxy are giant clouds of molecules and dust, creatively named Giant Molecular Clouds. In these clouds, and smaller versions of them, stars and planets are formed. One of the primary fields of study of molecular astrophysics then, is star and planet formation. Molecules may be found in many environments, however, from stellar atmospheres to those of planetary satellites. Most of these locations are cool, and molecular emission is most easily studied via photons emitted when the molecules make transitions between low rotational energy states. One molecule, composed of the abundant carbon and oxygen atoms, and very stable against dissociation into atoms, is carbon monoxide, CO. The wavelength of the photon emitted when the CO molecule falls from its lowest excited state to its zero energy, or ground, state is 2.6mm, or 115 gigahertz (billion hertz). This frequency is a thousand times higher than typical FM radio frequencies. At these high frequencies, molecules in the Earth's atmosphere can block transmissions from space, and telescopes must be located in dry (water is an important atmospheric blocker), high sites. Radio telescopes must have very accurate surfaces to produce high fidelity images.

See also

  • Astrophysics
  • Atomic, molecular, and optical physics
  • Spectroscopy
 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Atomic_and_Molecular_astrophysics". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE