To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Assay
There are numerous types of assays, such as an antigen capture assay, bioassay, competitive protein binding assay, crude oil assay, four-point assay, immunoassay, microbiological assay, stem cell assay, and many others, including concentration assays. Additional recommended knowledge
Molecular biology assaysAssays are regularly utilized in molecular biology scientific research laboratories. DNAAssays for studying interactions of proteins with DNA include:
RNA
Protein
CytotoxicityAssays for studying how toxic a compound is to cells:
Viruses
Cellular secretionsA wide range of cellular secretions (say, a specific antibody or cytokine) can be detected using the ELISA technique. The number of cells which secrete those particular substances can be determined using a related technique, the ELISPOT assay. DrugsIllegal drug testing Environmental contaminantsMethods of assay of precious metals
There are methods of assay suitable for use on raw materials and other methods which are more properly suited for finished goods. Raw precious metals (bullion) are assayed by an assay office. Silver is assayed by titration, gold by cupellation and platinum by inductively coupled plasma optical emission spectrometry (ICP OES).[1],[2] Precious metal items of art or jewelry are frequently hallmarked (depending upon the requirements of the laws of either the place of manufacture or the place of import). Where required to be hallmarked, semi-finished precious metal items of art or jewelry pass through the official testing channels where they are analyzed or assayed for precious metal content. While different nations permit a variety of legally acceptable finenesses, the assayer is actually testing to determine that the fineness of the product conforms with the statement or claim of fineness that the maker has claimed (usually by stamping a number such as 750 for 18k gold) on the item. In the past the assay was conducted by using the touchstone method but currently (most often) it is done using X-ray Fluorescence (XRF). XRF is used because this method is more exacting than the touchstone test. The most exact method of assay is known as fire assay or cupellation. This method is better suited for the assay of bullion and gold stocks rather than works or art or jewelry because it is a completely destructive method. The touchstoneThe age-old touchstone method is particularly suited to the testing of very valuable pieces, for which sampling by destructive means, such as scrapping, cutting or drilling is unacceptable. A rubbing of the item is made on a special stone, treated with acids and the resulting color compared to references. Differences in precious metal content as small as 10 to 20 parts per thousand can often be established with confidence by the test. It is not indicated for use with white gold, for example, since the color variation among white gold alloys is almost unperceivable. X-ray fluorescenceThe modern X-ray fluorescence is also a non-destructive technique that is suitable for normal assaying requirements. It typically has an accuracy of 2 to 5 parts per thousand and is well-suited to the relatively flat and large surfaces. It is a quick technique taking about three minutes, and the results can be automatically printed out by computer. It also measures the content of the other alloying metals present. It is not indicated, however, for articles with chemical surface treatment or electroplating. Fire assay/cupellationThe most elaborate but totally destructive assay method is fire-assay,also called cupellation, with an accuracy of 1 part in 10,000. In this process the article is melted, the alloys separated and constituents weighed. The assay of coinsAn assayer is often assigned to each mint or assay office to determine and assure that all coins produced at the mint have the correct content or purity of each metal specified, usually by law, to be contained in them. This was particularly important when gold and silver coins were produced for circulation and used in daily commerce. Few nations, however, persist in minting silver or gold coins for general circulation. For example the U.S. discontinued the use of gold in coinage in 1933. The U.S. was perhaps the last nation to discontinue the use of silver in circulating coins in its 1969 half dollar coin, although the amount of silver used in smaller denomination coins was ended after 1964. Even with the half dollar, the amount of silver used in the coins was reduced from 90% in 1964 and earlier to 40% between 1965 and 1969. Copper, nickel, cupro-nickel and brass alloys now predominate in coin making. Notwithstanding, several national mints, including the Australian Mint at Perth, the Austrian Mint, the British Royal Mint, the Royal Canadian Mint, the South African Mint and the U.S. Mint continue to produce precious metal bullion coins for collectors and investors. The precious metal purity and content of these coins is guaranteed by the respective mint or government and therefore the assay of the raw materials and finished coins is an important quality control. In the UK the Trial of the Pyx is a ceremonial procedure for ensuring that newly-minted coins conform to required standards. See also
ReferencesCategories: Laboratory techniques | Titration | Silver | Gold |
|
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Assay". A list of authors is available in Wikipedia. |