To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Actinium
Actinium (pronounced /ækˈtɪniəm/) is a chemical element with the symbol Ac and atomic number 89. Additional recommended knowledge
Notable characteristicsActinium is a silvery, radioactive, metallic element. Due to its intense radioactivity, Actinium glows in the dark with a pale blue light. It is found only in traces in uranium ores as 227Ac, an α and β emitter with a half-life of 21.773 years. One ton of uranium ore contains about a tenth of a gram of actinium. ApplicationsIt is about 150 times as radioactive as radium, making it valuable as a neutron source. Otherwise it has no significant industrial applications. 225Ac is used in medicine to produce 213Bi in a reusable generator or can be used alone as an agent for radio-immunotherapy for Targeted Alpha Therapy (TAT). 225Ac was first produced artificially by the ITU in Germany using a cyclotron and by Dr Graeme Melville at St George Hospital in Sydney using a linac in 2000. HistoryActinium was discovered in 1899 by André-Louis Debierne, a French chemist, who separated it from pitchblende. Friedrich Oskar Giesel independently discovered actinium in 1902 and called it "emanium" in 1904. Debierne's name was retained because it had seniority. The chemical behavior of actinium is similar to that of the rare earth lanthanum. The word actinium comes from the Greek aktis, aktinos, meaning beam or ray. OccurrenceActinium is found in trace amounts in uranium ore, but more commonly is made in milligram amounts by the neutron irradiation of 226Ra in a nuclear reactor. Actinium metal has been prepared by the reduction of actinium fluoride with lithium vapor at about 1100 to 1300ºC. IsotopesNaturally occurring actinium is composed of 1 radioactive isotope; 227Ac. 36 radioisotopes have been characterized with the most stable being 227Ac with a half-life of 21.772 y, 225Ac with a half-life of 10.0 days, and 226Ac with a half-life of 29.37 h. All of the remaining radioactive isotopes have half-lifes that are less than 10 hours and the majority of these have half lifes that are less than 1 minute. The shortest-lived isotope of actinium is 217Ac which decays through alpha decay and electron capture. It has a half-life of 69 ns. Actinium also has 2 meta states. Purified 227Ac comes into equilibrium with its decay products at the end of 185 days, and then decays according to its 21.773-year half-life. The isotopes of actinium range in atomic weight from 206 u (206Ac) to 236 u (236Ac). Precautions227Ac is extremely radioactive, and in terms of its potential for radiation induced health effects, 227Ac is even more dangerous than plutonium. Ingesting even small amounts of 227Ac would be fatal.[citation needed] References
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Actinium". A list of authors is available in Wikipedia. |