To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Acetylcysteine
Acetylcysteine (rINN; pronounced /ˌæsɛtəlˈsɪstiːn, əˌsɛtəl-/), also known as N-acetylcysteine (abbreviated NAC), is a pharmacological agent used mainly as a mucolytic and in the management of paracetamol (acetaminophen) overdose. For these indications, it is available under the trade names ACC (Hexal AG), Mucomyst (Bristol-Myers Squibb), Acetadote (Cumberland Pharmaceuticals), Fluimucil (Zambon) and Parvolex (GSK), Lysox (Menarini). Additional recommended knowledge
Dosage formsAcetylcysteine is available in different dosage forms for different indications:
The IV injection and inhalation preparations are, in general, prescription only, whereas the oral solution is available over the counter in many countries. Clinical useMucolytic therapyInhaled acetylcysteine is indicated for mucolytic ("mucus-dissolving") therapy as an adjuvant in respiratory conditions with excessive and/or thick mucus production. Such conditions include emphysema, bronchitis, tuberculosis, bronchiectasis, amyloidosis, pneumonia. It is also used post-operatively, as a diagnostic aid, and in tracheostomy care. It may be considered ineffective in cystic fibrosis (Rossi, 2006). However, a recent paper in the Proceedings of the National Academy of Sciences reports that high-dose oral N-acetylcysteine modulates inflammation in cystic fibrosis and has the potential to counter the intertwined redox and inflammatory imbalances in CF (Tirouvanziam et al., 2006). Oral acetylcysteine may also be used as a mucolytic in less serious cases. For this indication, acetylcysteine acts to reduce mucus viscosity by splitting disulfide bonds linking proteins present in the mucus (mucoproteins). Paracetamol overdoseIntravenous acetylcysteine is indicated for the treatment of paracetamol (acetaminophen) overdose. Although both IV and oral acetylcysteine are equally effective for this indication, oral administration is uncommon, as it is poorly tolerated, owing to the high doses required (due to low oral bioavailability), very unpleasant taste and odour, and adverse effects (particularly nausea and vomiting). However, 3% to 6% of people given intravenous acetylcysteine show a severe, anaphylaxis-like allergic reaction, which may include extreme breathing difficulty (due to bronchospasm), a decrease in blood pressure, rash, angioedema, and sometimes also nausea and vomiting (Kanter, 2006). Repeated overdoses will cause the allergic reaction to get worse and worse. Several studies have found this anaphylaxis-like reaction to occur more often in people given IV acetylcysteine despite serum levels of paracetamol not high enough to be considered toxic (Dawson et al., 1989; Bailey & McGuigan, 1998; Schmidt & Dalhoff, 2001; Lynch & Robertson, 2004). For this indication, acetylcysteine acts to augment glutathione reserves (depleted by toxic paracetamol metabolites) in the body and, together with glutathione to directly bind to toxic metabolites. These actions serve to protect hepatocytes in the liver from toxicity due to paracetamol overdose. In some countries, a specific intravenous formulation does not exist to treat paracetamol overdose. In these cases, the formulation used for inhalation may be used intravenously. Nephroprotective agentOral acetylcysteine is used for the prevention of radiocontrast-induced nephropathy (a form of acute renal failure). Some studies show that prior administration of acetylcysteine markedly decreases (90%) radiocontrast nephropathy (Tepel et al 2000), whereas others appear to cast doubt on its efficacy (Hoffman et al., 2004; Miner et al., 2004). Worth considering is the newest data published in two papers in the New England Journal of Medicine and the Journal of the American Medical Association. The authors' conclusions in those papers were: 1) "Intravenous and oral N-acetylcysteine may prevent contrast-medium–induced nephropathy with a dose-dependent effect in patients treated with primary angioplasty and may improve hospital outcome." (Marenzi et al, 2006) 2) "Acetylcysteine protects patients with moderate chronic renal insufficiency from contrast-induced deterioration in renal function after coronary angiographic procedures, with minimal adverse effects and at a low cost" (Kay et al., 2003). Acetylcysteine continues to be commonly used in individuals with renal impairment to prevent the precipitation of acute renal failure. InvestigationalThe following uses have not been well-established or investigated:
ChemistryAcetylcysteine is the N-acetyl derivative of the amino acid L-cysteine, and is a precursor in the formation of the antioxidant glutathione in the body. The thiol (sulfhydryl) group confers antioxidant effects and is able to reduce free radicals. Possible toxicityResearchers at the University of Virginia recently reported that acetylcysteine, which is found in many bodybuilding supplements, could potentially cause damage to the heart and lungs (Palmer et al., 2007). They found that acetylcysteine was metabolized to S-nitroso-N-acetylcysteine (SNOAC), which increased blood pressure in the lungs and right ventricle of the heart (pulmonary artery hypertension) in mice treated with acetylcysteine. The effect was similar to that observed following a 3-week exposure to an oxygen-deprived environment (chronic hypoxia). The authors also found that SNOAC induced a hypoxia-like response in the expression of several important genes both in vitro and in vivo. The implications of these findings for long-term treatment with acetylcysteine have not yet been investigated. The dose used by Palmer and colleagues (2007) was dramatically higher than that used in humans; nonetheless, the drug's effects on the hypoxic ventilatory response have been observed previously in human subjects at more moderate doses (Hildebrandt et al., 2002). References
See also
Categories: Antioxidants | Antidotes |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Acetylcysteine". A list of authors is available in Wikipedia. |