To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
CryptandCryptands are a family of synthetic bi- and polycyclic multidentate ligands for a variety of cations.[2] The Nobel Prize for Chemistry in 1987 was given to Donald J. Cram, Jean-Marie Lehn, and Charles J. Pedersen for their efforts in discovering and determining uses of cryptands and crown ethers, thus launching the now flourishing field of supramolecular chemistry.[3] The term cryptand implies that this ligand binds substrates in a crypt, interring the guest as in a burial. These molecules are three dimensional analogues of crown ethers but are more selective and complex the guest ions more strongly. The resulting complexes are lipophilic. Additional recommended knowledge
StructureThe most common and most important cryptand is N[CH2CH2OCH2CH2OCH2CH2]3N; the formal IUPAC (International Union of Pure and Applied Chemistry) name for this compound is 1,10-diaza-4,7,13,16,21,24-hexaoxabicyclo[8.8.8]hexacosane. So it is easy to see why the common name of "cryptand" was preferable. This compound is termed [2.2.2]cryptand, where the numbers indicate the number of ether oxygen atoms (and hence binding sites) in each of the three bridges between the amine nitrogen "caps". Many cryptands are commercially available under the tradename "Kryptofix." All-amine cryptands exhibit particularly high affinity for alkali metal cations, which has allowed the isolation of salts of K-.[4] PropertiesThe three-dimensional interior cavity of a cryptand provides a binding site - or nook - for "guest" ions. The complex between the cationic guest and the cryptand is called a cryptate. Cryptands form complexes with many "hard cations" including NH4+, lanthanides, alkali metals, and alkaline earth metals. In contrast to typical crown ethers, cryptands bind the guest ions using both nitrogen and oxygen donors. Their three-dimensional encapsulation mode confers some size-selectivity, enabling discrimination among alkali metal cations (e.g. Na+ vs. K+). UsesCryptands although they are more expensive and more difficult to prepare offer much better selectivity and strength of binding[5] than other complexants for alkali metals, such as crown ethers. They are able to extract otherwise insoluble salts into organic solvents. Cryptands increase the reactivity of anions in salts since they effectively break up ion-pairs. They can be also be used as phase transfer catalysts by transferring ions from one phase to another.[6] Cryptands enabled the synthesis of the alkalides and electrides. They have also been used in the crystallization of Zintl ions such as Sn92−. References
General readingLee, J.D. (1991). Concise Inorganic Chemistry, 4th edition, New York: Chapman & Hall, 306-08 & 353. ISBN 0-412-40290-4. Categories: Supramolecular chemistry | Amines | Chelating agents |
|
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Cryptand". A list of authors is available in Wikipedia. |